

NCEP Central Operations
WCOSS Implementation Standards

March 17, 2016

Version 10.1

Change logs can be found at
http://www.nco.ncep.noaa.gov/idsb/implementation_standards

http://www.nco.ncep.noaa.gov/idsb/implementation_standards

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 2 -

I. Introduction - 3 -

II. Workflow - 3 -

III. Standard Variables, Formats, and Utilities - 4 -

A. Standard Environment Variables - 4 -

B. File Name Conventions - 5 -

C. Production Utilities - 6 -

D. Date Utilities - 8 -

E. GRIB Utilities - 10 -

IV. Standards - 10 -

A. General Application Standards - 10 -

B. Compiled Code (C or FORTRAN source) - 12 -

C. Interpreted Code (bash, ksh or perl scripts) - 13 -

V. Dataflow - 14 -

VI. Code Delivery and Vertical Structure - 14 -

A. Source Code Compilation (C or FORTRAN) - 15 -

B. Directory Structures - 15 -

Appendix A: Workflow Examples - 17 -

Appendix B: Variables and Directory Structure Tables - 22 -

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 3 -

I. Introduction
The reliable production and availability of the National Center for Environmental Prediction's (NCEP)
guidance products plays a critical role in the mission of the National Weather Service to provide
forecasts and warnings “for the protection of life and property and the enhancement of the national
economy.” This document outlines policies and technical standards that must be met in order to
implement operational code or numerical models in the production suite running on the Weather &
Climate Operational Supercomputing System (WCOSS) and maintained by NCEP Central Operation's
(NCO) Implementation and Data Services Branch (IDSB). WCOSS is currently comprised of three distinct
phases, referred to in this document as IBM phase 1, IBM phase 2, and Cray XC40. The coding
standards, examples of operational-quality scripts and code, and best practices presented have been
established to enable operational stability, efficient troubleshooting and improved Environmental
Equivalence (EE) between environments within NCO and between NCO and developing organizations.

II. Workflow
In the production environment, all jobs are scheduled and submitted to the WCOSS resource manager,
Platform LSF, by ecFlow. EcFlow is a workflow manager developed and maintained by the European
Centre for Medium-Range Weather Forecasts (ECMWF) with an intuitive GUI that is used to handle
dependencies, schedule jobs, and monitor the production suite. Each job in ecFlow is associated with an
ecFlow script which gets processed to generate a job card (a.k.a. submission script) whose function is to
set bsub parameters and much of the execution environment (see Section III-A) and call the J-job to
execute processing.

The purpose of the J-job is fourfold: to set up location (application/data directory) variables, to set up
temporal (date/cycle) variables, to initialize the data and working directories, and to call the ex-script.
The ex-script is the driver for the bulk of the application, including data-staging in the working directory,
setting up any model-specific variables, moving data to long-term storage, sending products off WCOSS
via DBNet and performing appropriate validation and error checking. It may call one or more ush (a.k.a.
utility) scripts. Additional discussion and examples of the workflow can be found in Appendix A.

All variables relating to the environment in which a job will run must be set, depending on the variable,
within the job card or J-job. To move a model from development to production, it should generally only
be necessary to change the variables exported in the job cards. Downstream scripts should always use
the variables established in the J-job and should never alter them.

job card J-job ex-script

ush
utility script(s)

compiled
executable(s)

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 4 -

III. Standard Variables, Formats, and Utilities

A. Standard Environment Variables
A standard set of environment variables has been established to simplify the production workflow and
improve the troubleshooting process. Table 1 delineates standard environment variables and where
they are typically set in the production workflow. They must be used wherever appropriate. In the
production environment, the variables with “job card” under “where set” in Table 1 are set in the job
card generated by ecFlow. On the Cray XC40 system, several are set by loading the prod_envir module.
Developers should likewise have a job card for each job which loads any required modules and sets
these variables to the correct values prior to calling the J-job. Variables that are not used in a given job
need not be defined (keep the J-job clutter-free!).

Table 1: A list of the standard environment variables
Variable Name Description Where

Set
RUN_ENVIR Set to “nco” if running in NCO's production environment. Used to

distinguish between organizations.
job card

envir Set to “test” during the initial testing phase, “para” when running in
parallel (on a schedule), and “prod” in production.

job card

NWROOT Root directory for the application, typically /nw$envir job card
NWROOTsystem Application root directory on alternate system (i.e. $NWROOTp1) job card
job Unique job name (unique per day and environment) job card
jobid Unique job identifier, typically $job.$$ (where $$ is an ID number) job card
jlogfile Log file for start time, end time, and error messages of all jobs job card
pgmout File where stdout of binary executables may be written J-job
NET Model name (first level of com directory structure) J-job
RUN Name of model run (third level of com directory structure) J-job
PDY Date in YYYYMMDD format J-job
PDYm# Dates of a previous day in YYYYMMDD format ($PDYm1 is

yesterday’s date, etc.)
J-job

PDYp# Dates of a future day in YYYYMMDD format ($PDYp1 is tomorrow’s
date, etc.)

J-job

cyc Cycle time in GMT, formatted HH job card
cycle Cycle time in GMT, formatted tHHz J-job
DATAROOT Directory containing the working directory, often

/gpfs/hps/nco/ops/tmpnwprd in production
job card

DATA Location of the job working directory, typically
$DATAROOT/$jobid

J-job

HOMEmodel Application home directory, typically $NWROOT/model.vX.Y.Z job card
USHmodel Location of the model’s ush files, typically $HOMEmodel/ush J-job
EXECmodel Location of the model’s exec files, typically $HOMEmodel/exec J-job
PARMmodel Location of the model’s parm files, typically $HOMEmodel/parm J-job
FIXmodel Location of the model’s fix files, typically $HOMEmodel/fix J-job
DCOMROOT dcom root directory job card
DCOM dcom directory for model input data J-job
COMROOT com root directory for input/output data on current system job card

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 5 -

COMROOTsystem com root directory for input/output data on alternate system (i.e.
$COMROOTp1 for phase 1 data and $COMROOTp2 for phase 2)

job card

COMIN com directory for current model's input data, typically
$COMROOT/$NET/$envir/$RUN.$PDY

J-job

COMOUT com directory for current model's output data, typically
$COMROOT/$NET/$envir/$RUN.$PDY

J-job

COMINmodel com directory for incoming data from model model J-job
COMOUTmodel com directory for outgoing data for model model J-job
GESROOT nwges root directory for input/output guess fields on current

system
job card

GESROOTsystem nwges root directory for input/output guess fields on alternate
system (i.e. $GESROOTp1)

job card

GESIN nwges directory for input guess fields; typically $GESROOT/$envir J-job
GESOUT nwges directory for output guess fields; typically

$GESROOT/$envir
J-job

PCOMROOT pcom root directory for outgoing products with WMO headers on
current system

job card

PCOM pcom directory for outgoing products with WMO headers; typically
$PCOMROOT/$NET

J-job

DBNROOT Root directory for the data-alerting utilities job card
SENDECF Boolean† variable used to control ecflow_client child commands job card
SENDDBN Boolean† variable used to control sending products off WCOSS job card
SENDDBN_NTC Boolean† variable used to control sending products with WMO

headers off WCOSS
job card

SENDCOM Boolean† variable to control data copies to $COMOUT job card
SENDWEB Boolean† variable used to control sending products to a web server,

often ncorzdm
job card

model_ver Current version of the model; where model is the model's directory
name (e.g. for $NWROOT/gfs.v12.0.0, gfs_ver=v12.0.0)

version
file

shared_directory_ver Current version of the shared_directory (e.g. for the gsi shared code
in $NWROOT/gsi_shared.v5.0.1, gsi_shared_ver=v5.0.1)

version
file

module_ver Version of module module which used by the current job version
file

KEEPDATA Boolean† variable used to specify whether or not the working
directory should be deleted upon successful job completion.

job card

†boolean variables are set to “YES” or “NO” (all caps)

B. File Name Conventions
Standard file naming conventions should also be used. File names should not contain uppercase
characters or the date (the directory in which the file resides will contain the date). File names should
indicate the name of the model run, the cycle, the type of data the file contains, the resolution of the
data (if applicable), other data related elements, the three-digit forecast hour the data represents (if
applicable), and the file type. Please observe the following:

1. Use periods to separate categories and use underscores to separate words within the same
category

2. Use a “p” in describing a “point” within a grid resolution. Ex. 0.25 = 0p25
3. Include an “f” in front of the forecast hours

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 6 -

4. Pad forecast hours with zeros so that all files have the same number of digits
5. Output file names should be consistent across environments and application versions, so

variables such as $job, $envir, and $model_ver should not be used to define file names.

Filename format for files in com:

model.tHHz.var_info.f###.domain.format

Example filenames for files in com (HH is the cycle/hour):

rtofs_glo.tHHz.std.f180.west_conus.grib2
aqm.tHHz.8hr_o3.227.grib2
sref.tHHz.mean_3hrly.pgrb243.grib2

Filename format for files in pcom:

format.model.tHHz.awp_var_nfo.f###.domain

Example filenames for files in pcom:

grib2.aqm.tHHz.08hr_o3.227
grib2.akrtma.tHHz.2dvaranl.198
grib2.sref.tHHz.spread.212

C. Production Utilities
It is imperative that all production code and scripts broadly employ error checking to catch and recover
from errors as quickly as possible. The context of the error should be communicated as descriptively as
possible and prefaced with “WARNING:” or “FATAL ERROR:”. Failures should not be allowed to
propagate downstream of the point where the problem can first be detected. The following utilities
should be used to assist in accomplishing these tasks. The below utilities are accessible with the
prod_util module. This module will prepend the directory containing all production modules to your
environment’s PATH variable and define other useful environment variables. See Table 6 (in Appendix B)
for variables and their descriptions. The module is loaded in all production ecFlow scripts and should be
loaded in development job cards as well. See Appendix A for examples of these utilities in use.

prep_step
prep_step unsets the FORT## variables used to pass unit assignments to FORTRAN executables. Since
there may be multiple FORTRAN programs running in a job, these variables must be reset before each
program execution.

startmsg
startmsg posts the start time of a program to $jlogfile

postmsg
postmsg writes a message to a log file. The first argument is the log file name and the second is the
message. In general, $jlogfile should be specified as the log file.

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 7 -

err_chk
err_chk is used to check and handle the $err variable which has been set to a program’s return code
and exported into the environment. If $err=0, the end time of the program is posted to the log file and
job execution continues. If $err is non-zero, the contents of the file errfile and $pgmout are written to
the output file, the time of the error is logged, and the job is aborted.

err_exit
err_exit will write the contents of $pgmout to the output file, write an error message with the time
of the error, and abort the job. It accepts an error string as input to which it will prepend “FATAL
ERROR.”

cpreq
cpreq has the same usage as the standard cp command. It is used to copy files that are essential to the
application. If the copy is unsuccessful then a FATAL ERROR will be posted to $jlogfile and the
output file and the job will abort immediately.

cpfs
cpfs has essentially the same usage as the standard cp command with the limitation that it may only
copy one file at a time (no globbing). It is used to ensure downstream applications will not attempt to
copy or read a partial file. It is most useful for copies across file systems or for very large files.

cpfs $COMIN/$file $new_file

will execute the following:
cpreq $COMIN/$file $new_file.cptmp
$FSYNC $new_file.cptmp
mv $new_file.cptmp $new_file

compath.py
The compath.py utility is used to discover the current absolute path of a given com directory and is
mainly used to set COMIN variables in J-jobs. As models move from one system on WCOSS to another,
this will assist in managing data localization. compath.py accepts the relative path of the directory you
wish to use data from as an argument; the corresponding absolute path is returned:

COMIN=${COMIN:-$(compath.py $NET/$envir/$RUN.$PDY)}

COMINm1=${COMINm1:-$(compath.py $NET/$envir/$RUN.$PDYm1)}

COMINgfs=${COMINgfs:-$(compath.py gfs/$envir/gfs.$PDY)}

COMINarch=${COMINarch:-$(compath.py arch/prod/syndat)}

To use non-production data, in the job card set the $COMPATH environment variable to a list of absolute
paths. compath.py will search those paths for a match before defaulting to production data.

export COMPATH="$COMROOT/nco:/dev/noscrub/First.Last/com/gfs"

mail.py
When nonfatal errors occur that may impact the quality of the model output, such as when backup data
is used, it is important to notify the appropriate parties so that the error can be addressed. The
mail.py utility can assist by sending an e-mail notification from any node on the system. To notify
production staff of a nonfatal but significant issue with a production job, one might execute:

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 8 -

msg="WARNING: Primary data source unavailable. Backup data is being used."
echo "$msg" | mail.py

To copy someone, use the “-c” flag:
echo "$msg" | mail.py –c first.last@noaa.gov

Run “mail.py -h” after loading the prod_util module to see additional options. Note that e-mail is
only sent in jobs run by NCO. Jobs run by others will merely print the message to stdout.

getsystem.pl
getsystem.pl simply tells you which WCOSS system you are on. Table 2 shows what you can expect
to receive when running this utility on a given system with a given set of option flags:

Table 2: getsystem.pl output
 Tide

Phase 1
Tide
Phase 2

Luna Gyre
Phase 1

Gyre
Phase 2

Surge

getsystem.pl Tide Tide Luna Gyre Gyre Surge

getsystem.pl –p Tide-p1 Tide-p2 Luna-XC40 Gyre-p1 Gyre-p2 Surge-XC40

getsystem.pl –t IBM IBM Cray IBM IBM Cray

getsystem.pl –tp IBM-p1 IBM-p2 Cray-XC40 IBM-p1 IBM-p2 Cray-XC40

D. Date Utilities
The following utilities are used to manage dates in the production suite. They must be used wherever
current dates are employed to enable proper scheduling and ensure that all jobs work as expected when
crossing over to a new year. The following date utilities are accessed by loading the prod_util module.

finddate.sh
Given a date, finddate.sh will return a date (in YYYYMMDD format) a specified number of days before
or after the given date. It may also provide a sequence of dates leading to the specified number of days
before or after the given date. Example 1 shows how to use finddate.sh. This utility does not work
for usage spanning more than two calendar months!

Example 1: Using finddate.sh
Script
#!/bin/sh
module load prod_util
PDY=20160101

Single date example
ten_days_ago=$(finddate.sh $PDY d-10)
ten_days_ahead=$(finddate.sh $PDY d+10)

Sequence example
last_four_days=$(finddate.sh $PDY s-4)
next_four_days=$(finddate.sh $PDY s+4)

echo "Today's date is $PDY"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "The last four days were $last_four_days"
echo "The next four days are $next_four_days"

Output
Today's date is 20160101

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 9 -

The date ten days ago was 20151222
The date in ten days will be 20160111
The last four days were 20151231 20151230 20151229 20151228
The next four days are 20160102 20160103 20160104 20160105

ndate
ndate is accessible by the variable $NDATE once the prod_util module has been loaded. ndate is a date
utility that will return a date in YYYYMMDDHH format. Given no arguments, it will return the current
date/hour. ndate takes up to two arguments, namely fhour and idate:

ndate [fhour [idate]]

fhour is a forecast hour (may be negative) and defaults to zero. idate is the initial date in
YYYYMMDDHH format and defaults to the current date. Example 2 shows how to use ndate.

Example 2: Using ndate
Script
#!/bin/sh
module load prod_util

PDYHH=$($NDATE)

Single date example
ten_days_ago=$($NDATE -240 $PDYHH)
ten_days_ahead=$($NDATE 240 $PDYHH)

cycle examples
next_cycle=$($NDATE 06 $PDYHH)
prev_cycle=$($NDATE -06 $PDYHH)

echo "Today's date and cycle is $PDYHH"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "Six hours from now will be $next_cycle"
echo "Six hours ago was $prev_cycle"

Output
Today's date and cycle is 2016010112
The date ten days ago was 2015122212
The date in ten days will be 2016011112
Six hours from now will be 2016010118
Six hours ago was 2016010106

setpdy.sh
setpdy.sh creates a file PDY that is sourced to export the standard date variables PDYmnm, PDYm{nm-
1}, PDYm{nm-2}, …, PDYm2, PDYm1, PDY, PDYp1, PDYp2, …, PDYp{np-2}, PDYp{np-1}, PDYpnp. By
default, nm and np are 7 but can be altered by providing alternate numbers as input parameters. The
variable cycle must be set (in ‘tHHz’ format) prior to execution. The default date is the current day’s
date as defined in the file /com/date/$cycle, but it can be overridden by setting the variable PDY prior
to execution. The date files in /com/date are set at 11:30 UTC and 23:30 UTC. At 23:30, the date files
for cycles 00–11 are incremented to the next day. At 11:30, the date files for cycles 12–23 are likewise
advanced. Therefore, if you were to set cycle to t12z and run setpdy.sh between 00:00 and 11:30,
you would get a PDY file centered on the previous day’s date. Example 3 shows how to use setpdy.sh.

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 10 -

Example 3: Using setpdy.sh (assuming current date is 20160101)
Script
#!/bin/sh
module load prod_util
export cycle=t12z

setpdy.sh 8 3
. PDY

echo "Yesterday's date was $PDYm1"

Contents of file PDY
export PDYm8=20151224
export PDYm7=20151225
export PDYm6=20151226
export PDYm5=20151227
export PDYm4=20151228
export PDYm3=20151229
export PDYm2=20151230
export PDYm1=20151231
export PDY=20160101
export PDYp1=20160102
export PDYp2=20160103
export PDYp3=20160104

Output
Yesterday's date was 20151231

E. GRIB Utilities
GRIB is a data format commonly used across the production model suite at NCEP and in Numerical
Weather Prediction worldwide. NCO supports several utilities responsible for manipulating GRIB data.
These utilities are accessible in production via the grib_util module. The module will define numerous
environment variables. See Table 6 (in Appendix B) for all variable definitions and descriptions of each
utility. The module must be loaded in the job cards of jobs using GRIB utilities:

module load grib_util/$grib_util_ver

IV. Standards

A. General Application Standards
Diagnosing failures quickly is a necessary component of maintaining a suite of products that boasts a
greater than 99% on-time delivery rate. To that end, all code should be scrutinized for both stability
and ease of troubleshooting. It is not practical to discuss all of the steps that can or should be taken
to write operational-quality code, but here are some things that should be considered:

i. Notification of use of backup data
 For scripts that have a secondary data source to be used when the primary data is not available,

the script should include a message that indicates the primary data is not available and backup
data is being used. If continued use of backup data will result in a degraded product, the
developer should work with NCO’s SPA team to include code to notify the appropriate parties
when primary data is unavailable. The mail.py utility can be useful in this regard.

ii. Descriptive error messages

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 11 -

Fatal errors should print a descriptive message beginning with “FATAL ERROR:”. Warnings or
non-fatal error messages should be prefaced with “WARNING:”. As with executable code, error
messages in scripts should be written so that if an issue arises, the context of that error or
failure is communicated as early and as clearly as possible.

iii. Appropriate modes of failure
An executable should not terminate abnormally with a segmentation or memory fault for errors
that are discoverable/trappable. For example, lack of input data should be handled either in the
script before the executable runs, or by the executable if checking in the script is not practical.

iv. Minimize the time it takes to re-run a failed job
In places where restarts can be applied to save time when recovering from a failure, they
should. Long running jobs that have multiple executable calls might be a good candidate to
break into two smaller jobs so that if a failure occurs, only the problem part need be re-run and
the time to completion is shorter.

v. No background processing
LSF loses control of processes when they are put in the background. Therefore, background
processing must be avoided.

vi. No external-pointing symlinks
Symbolic links to resources outside of the application directory or package (i.e. links to absolute
paths) are not allowed within the package. When external resources are required, their paths
should be obtained from production module variables (when available) or defined as variables in
the J-job and used wherever the external resource is needed.

vii. Working directories
Working directories should contain a unique identifier (pid) unless there is an application need
to share the directory across multiple jobs (e.g. a forecast job writing output that is needed by a
post job running in parallel). Working directories should be removed upon successful
completion of the run. All data that is needed for longer than one cycle should be copied to
$COMOUT, $GESOUT or $PCOM.

viii. Data of opportunity
It is acceptable to use data from a server or other source that is not supported 24/7. However,
the application cannot fail when this data is missing. Appropriate notification of use of backup
data should be made (see above) and the job should continue with other operationally-
supported input data.

Source code and scripts should be annotated with information that may help staff remedy a
problem if something goes awry. In some cases, too much information is as bad as none at all. We
ask that you use your best judgment to include information that will be of the most help in
troubleshooting potential issues. Example 4 shows a suggested format for a documentation block
(DOCBLOCK).

Example 4: DOCBLOCK template*
Program Name:
Author(s)/Contact(s):
Abstract:

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 12 -

History Log:
<brief list of changes to this source file>

Usage:
Parameters: <Specify typical arguments passed>
Input Files:
<list file names and briefly describe the data they include>
Output Files:
<list file names and briefly describe the information they include>

Condition codes:
< list exit condition or error codes returned >
If appropriate, descriptive troubleshooting instructions or
likely causes for failures could be mentioned here with the
appropriate error code

User controllable options: <if applicable>

 * Use appropriate comment indicator (#, !, or //) where appropriate.

B. Compiled Code (C or FORTRAN source)
1. Compiled code must be written in either C/C++ or FORTRAN.
2. C and FORTRAN compilers must be the default Intel version or higher (icc and ifort) on IBM

Phase 1 & 2 and the default Intel or Cray versions or higher (cc, CC, and ftn) on the Cray XC40.
3. All libraries must be approved for production use. On the Cray XC40 system, approved libraries

are found by running “module avail” and looking under the /usrx/local/prod/modulefiles and
/gpfs/hps/nco/ops/nwprod/lib/modulefiles listings. Makefiles should include compilers and
libraries using variables defined in modules:

Within the build script or build module in the parent sorc directory:
 module load PrgEnv-intel/5.2.56
 module load w3nco-intel/2.0.6

Within the makefile:
 LIBS = ${W3NCO_LIB4}
 ndate: ndate.f
 ftn –o ndate ndate.f $(LIBS)

 A build modulefile must be provided for more complex builds. See Example 11, Example 12, and
Example 13 in Appendix A for an example build script, modulefile, and makefile, respectively.

4. In order for certain errors to be trapped early in the build process, it is recommended that the
check_prereqs target be added to all makefiles:

 check_prereqs:
 /gpfs/hps/nco/ops/nwprod/spa_util/check_libs.bash $(LIBS)
 /gpfs/hps/nco/ops/nwprod/spa_util/check_incs.bash $(INC)

5. Do not specify absolute paths to executables, libraries, or any other products inside the
makefile. With few exceptions, paths should be set by a module.

6. Code should compile without warnings.
7. Errors must be caught as early as possible and the context of the error should be communicated

clearly. Failures should not be allowed to propagate past the point where the problem is first
detectable.

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 13 -

8. FORTRAN Logical Unit Number (LUN) Assignments:

In code that uses static units, and where the flow of operation is simple, please make an effort
to use a standard or consistent assignment strategy. We understand that in some situations,
source code is used by a community of scientists and it can be impractical to assign specific unit
numbers to files, but it is useful to have a consistent standard for all input and output wherever
possible to provide a means to quickly understand how data is being used.

• Units 11–49 for all input files
• Units 51–79 for all output files
• Units 80–94 for all temporary work files, written and used within in the same program

Except for work files, the same unit number should never be used for both input and output by
the same program. Users should associate filenames to unit numbers in the script prior to
program execution. On the WCOSS, users should use the environment variables FORTk, where k
is a two-digit number. Filenames should never be hardcoded in the source.

Example:
export FORT11=inputfile.tbl
export FORT60=outputfile.grb

C. Interpreted Code (bash, ksh or perl scripts)
Each “job” is associated with a single J-job, located in the jobs subdirectory. The J-job sets up the
environment and calls an ex-script script located in the scripts subdirectory. All J-jobs should follow the
naming convention JAAAAA: all capital letters beginning with the letter ‘J’ with no extension. J-jobs
must use Bash (/bin/bash or /bin/sh, the latter invokes Bash in POSIX mode on WCOSS) or Korn Shell
(/bin/ksh). Ex-scripts and utility scripts may be written in Bash, Korn shell, Perl, or Python. Ex-scripts
should follow the naming convention exaaaaa.sh: all lowercase beginning with the letters ‘ex’ and
ending with the appropriate extension (‘.sh’, ‘.pl’, ‘.py’). Any sub-scripts to the ex-script will be located
in the ush subdirectory, be named in all lowercase letters not beginning with the letters ‘ex,’ and should
end with the appropriate extension. Underscores are permitted in all file names.

Please also observe the following points:

1. Enable debug logging at the top of each J-job:
export PS4=' $SECONDS + '
set -x

2. Utilize standard environment variables and utilities (See Section III).
3. Each block of dbnet alerts must be wrapped with logic testing whether the variable $SENDDBN

or $SENDDBN_NTC, as applicable, is set to “YES”.
4. Each execution of a C or FORTRAN code must be wrapped with the production utilities

prep_step, startmsg and err_chk.
5. Any executions that print verbose output (more than 100 lines or so per execution) should

redirect standard out to $pgmout and standard error to errfile:
 $EXECmodel/$pgm >> $pgmout 2> errfile

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 14 -

6. Production utilizes a centralized cleanup of directories in /com and /nwges. Production scripts
should not remove directories at the /com/$NET/$envir/$RUN.$PDY level.

7. Any output written to pcom should be named in such a way that the files are overwritten with
each subsequent run from day to day.

8. Remove all references to developer work areas and all development tools (benchmarking, etc.)
before submitting to IDSB.

9. If your application should continue if a preceding step fails, it should be documented in a
comment in the script just before (or after) the relevant part is called and a descriptive
“WARNING:” message printed to stdout and posted to the $jlogfile via postmsg.

10. Never write to dcom!

Reference Appendix A for commented examples of a version file, ecFlow script, J-job, ex-script,
modulefile and makefile.

V. Dataflow
Distributed Brokered Networking (DBNet) is used to disseminate products operationally from
WCOSS. DBNet is a series of server/client daemons that are controlled by table and key relationships.
To disseminate a product, jobs running on WCOSS make a call to the dbn_alert executable which makes
the DBNet software aware of the new product. Then, based on entries in several different tables, the
product can be sent to one or more external servers. The NCO Dataflow Team is responsible
for maintaining DBNet and needs to be coordinated with in the event any new alert call is added or if an
existing alert is changed. All DBNet alerts must be wrapped in a check for $SENDDBN (or
$SENDDBN_NTC) equal to “YES”.

$DBNROOT/bin/dbn_alert MODEL PMB_GB2 $job $COMOUT/$outputfile

Field Description
Type [MODEL] Generic data type
Subtype [PMB_GB2] Specific data type under the generic type
Job Name [$job] Name of the process that alerted the file, this is only

used in the log output. It can be helpful when trying to
identify the job that called dbn_alert

File [$COMOUT/$outputfile] File to be alerted; must include the full path.

VI. Code Delivery and Vertical Structure
All components of an application to be run in the NCO production environment must be delivered to
IDSB's Senior Production Analysts (SPA) via subversion. When modifying an application that is already in
production, always begin with the most recent production version at
https://svnwcoss.ncep.noaa.gov/MODEL/tags/.

https://svnwcoss.ncep.noaa.gov/MODEL/trunk/

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 15 -

A. Source Code Compilation (C or FORTRAN)
1. The directory structure, compilation scripts, makefiles, and documentation for building should

be understandable to someone unfamiliar with the specifics of your model.
2. Do not deliver pre-built executables or libraries to IDSB. It is the SPA's responsibility to build all

code before it is run in production.
3. If more than one executable is to be built, divide the source files into sub-directories according

to the executable they produce (unless multiple executables share a large portion of their code
base in which case sub-directory sharing is allowed). The name of each source directory should
be the name of the executable it produces plus the appropriate extension (.cd or .fd for C or
FORTRAN code, respectively).

4. All source code must be delivered with a modulefile and/or build script used to set up the build
environment. It should define the compiler and its version (by loading the appropriate versioned
compiler or ‘PrgEnv’ module), specific library versions, and all other external files used to
compile the application. An example modulefile can be found in Example 12 of Appendix A.
Creating symbolic links to external resources (i.e. to absolute paths) is not allowed.

5. It is preferable that each source code directory have a makefile that does everything needed to
build the executable. For example, global_fcst.fd would contain FORTRAN code and a makefile to
produce the global_fcst executable. The basic ‘make’ command should not move the compiled
binary; however, ‘make install’ may do so. Example 13 of Appendix A contains an example.

6. Use a readme file in the source directory to explain the build process, particularly if it requires
any interaction or if it is non-standard in any way; for example in situations where a makefile
produces more than one executable. Clear, concise instructions (see Example 10 in Appendix A)
will reduce confusion and errors if it becomes necessary to rebuild the executable quickly.

B. Directory Structures
All components of an application to be implemented into the production environment are required to
be in vertical structure, where, with the exception of system or standard production libraries and input
data, all of the files required to completely build and run the jobs are contained in an application-
specific package. The package must contain all J-jobs and ex-scripts specific to the model and should be
named with the following format: model.vX.Y.Z (e.g. gfs.v12.0.1). Files should be organized into sub-
directories according to their type (see Table 3). If there exists code, scripts or other files shared
between multiple models then they should reside in a separate shared package (e.g. gsi_shared.v5.0.0).
Shared packages should not contain J-jobs or a jobs sub-directory.

Table 3: Package Sub-directories
Subdirectory Description
doc release notes or other documentation
jobs J-jobs
scripts ex-scripts
ush utility scripts (ush-scripts)
sorc source code
exec binary executables
parm parameter files

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 16 -

fix fixed fields, tables or other static input data
lib model-specific libraries
ecf ecFlow scripts and definition files (developers not

responsible for this directory)
gempak all gempak-related files

Table 4 lists the primary data and application directories used within the WCOSS NCO production
environment. On the IBM (phase 1 and 2) systems, symbolic links at the root level are available to the
directories listed in Table 4 (for example /nwprod for phase 1 and /nwprod2 for phase 2). On the Cray
XC40 systems, the se directories should be located using the variables defined in the prod_envir module
(see Example 7 in Appendix A).

Table 4: WCOSS directory structure
Directory Description
nwprod applications/packages in the production suite
nwtest applications/packages in the test suite (unscheduled)
nwpara applications/packages in the parallel suite (scheduled)
nwbkup backup of production packages (/nwprod)
nwges model guess fields (spin-up data)
com data and application output, including outgoing products
dcom incoming data (retrieved from outside WCOSS)
pcom outgoing products with WMO headers
tmpnwprd temporary working directories for running jobs

Data from external sources is stored in dcom and model output is stored in com. The output folder of
the com directory contains job stdout and stderr. Several forecast models produce model guess fields to
be used as input for subsequent model runs. This spin-up data is stored in nwges. World
Meteorological Organization (WMO) headed output products sent to the Telecommunication
Operations Center (TOC) and onward to the Satellite Broadcast Network (SBN) are stored in pcom.
Pcom data must be date-independent such that the data files are overwritten each day. Table 5 (below),
Table 7, Table 8, and Table 9 (in Appendix B) show the structures of com, nwges, pcom and dcom
directories, respectively.

Table 5: Structure of /com directory
Subdirectory Description
NET/prod/RUN.YYYYMMDD production model output for a day
NET/test/RUN.YYYYMMDD test model output for a day
NET/para/RUN.YYYYMMDD parallel model output for a day
output/prod/YYYYMMDD production job stdout/stderror for a day
output/test/YYYYMMDD test job stdout/stderror for a day
output/para/YYYYMMDD parallel job stdout/stderror for a day
output/transfer/YYYYMMDD transfer job stdout/stderror for a day
nawips/envir/RUN.YYYYMMDD NAWIPS model output for a day
logs log files

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 17 -

Appendix A: Workflow Examples
All examples are for job jpmb_forecast. Model name is nco and type of model run is pmb.

Example 5: Version file pmb.ver
The version file tracks the versions of all packages and modules used by your application.

export pmb_ver=v1.1.0
export nco_shared_ver=v1.0.6
export grib_util_ver=1.0.1

set the model version
set the shared code version
set the grib_util version

Example 6: Job card jpmb_forecast.job
In production, ecFlow preprocesses ecFlow scripts to generate job cards that are submitted to LSF. On
the Cray XC40 system, production paths are set by loading the prod_envir module (Example 7). On the
IBM system, they are exported individually within the job card (for production Phase 2 jobs,
NWROOT=/nwprod2, COMROOT=/com2, GESROOT=/nwges2, and PCOMROOT=/pcom2). To read or write
files from a development space, point the variables in your job card to the appropriate location(s).

#BSUB –J jpmb_forecast_00
#BSUB –o
/gpfs/hps/nco/ops/com/output/prod/today/pmb_forecast_00.o%J
#BSUB -P PMB-OPS
#BSUB -q prod
#BSUB –L /bin/sh
#BSUB –W 00:30
#BSUB –cwd /tmp
#BSUB –M 100
#BSUB -extsched 'CRAYLINUX[]'
export NODES=8

%include <head.h>

export job=${job:-$LSB_JOBNAME}
export jobid=${jobid:-$job.$LSB_JOBID}
export RUN_ENVIR=${RUN_ENVIR:-nco}
export envir=${envir:-prod}
export SENDDBN=${SENDDBN:-YES}
export SENDDBN_NTC=${SENDDBN_NTC:-YES}

module load prod_util
module load prod_envir

export jlogfile=${jlogfile:-
 ${COMROOT}/logs/jlogfiles/jlogfile.$jobid}
export DATAROOT=${DATAROOT:-/gpfs/hps/nco/ops/tmpnwprd}
export DBNROOT=/iodprod/dbnet_siphon
export PCOMROOT=${PCOMROOT:-${PCOMROOT}/$envir}
export SENDECF=${SENDECF:-YES}
export SENDCOM=${SENDCOM:-YES}
export KEEPDATA=${KEEPDATA:-NO}

export cyc=00

export KMP_AFFINITY=disabled
export MPICH_GNI_MAX_EAGER_MSG_SIZE=65536
export FORT_BUFFERED=TRUE

job name
stdout/stderr

project identifier
LSF queue name
login shell
wall clock
protect your home directory
MAMU node memory alloc.
schedule nodes via ALPS
request 8 nodes

begin ecFlow communication

setup run environment for

$job
set $RUN_ENVIR to nco
set $envir to prod
alert files via DBNet
alert AWIPS files via DBNet

load production utilities
setup data root directories

set jlogfile location

set working dir. location
set DBNet exec location
add $envir to pcom path
send signals to ecFlow
copy output files to com
delete working dir. after run

set the cycle

define parallel environment
variables

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 18 -

model=pmb
. ${NWROOT:?}/versions/${model}.ver

module load grib_util/$grib_util_ver

eval export HOME${model}=$NWROOT/$model.\$${model}_ver
eval \$HOME${model}/jobs/JPMB_FORECAST

%include <tail.h>

package name of J-job
source version file

load grib utility module

define $HOMEpmb variable
call J-job

end ecFlow communication

Example 7: prod_envir module on Surge
To see what a module will do, run the “module show” or “module display” command.

> module show prod_envir

module-whatis Sets up variables for NCEP production suite paths
setenv NWROOT /gpfs/hps/nco/ops/nwprod
setenv NWROOTp1 /gpfs/gp1/nco/ops/nwprod
setenv NWROOTp2 /gpfs/gp2/nco/ops/nwprod
setenv COMROOT /gpfs/hps/nco/ops/com
setenv COMROOTp1 /gpfs/gp1/nco/ops/com
setenv COMROOTp2 /gpfs/gp2/nco/ops/com
setenv GESROOT /gpfs/hps/nco/ops/nwges
setenv GESROOTp1 /gpfs/gp1/nco/ops/nwges
setenv GESROOTp2 /gpfs/gp2/nco/ops/nwges
setenv DCOMROOT /gpfs/gp1/nco/ops/dcom
setenv PCOMROOT /gpfs/hps/nco/ops/pcom

Example 8: J-job JPMB_FORECAST
#!/bin/sh

date
export PS4=' $SECONDS + '
set -x

export DATA=${DATA:-${DATAROOT:?}/$jobid}
mkdir -p $DATA
cd $DATA

export cycle=${cycle:-t${cyc}z}
setpdy.sh
. PDY

export SENDDBN=${SENDDBN:-YES}
export SENDECF=${SENDECF:-YES}

export USHpmb=$HOMEpmb/ush
export EXECpmb=$HOMEpmb/exec
export PARMpmb=$HOMEpmb/parm
export FIXpmb=$HOMEpmb/fix

export HOMEnco=${HOMEnco:-${NWROOT}/nco_shared.$nco_shared_ver}
export EXECnco=$HOMEnco/exec

export NET=${NET:-nco}
export RUN=${RUN:-pmb}

export COMINgfs=${COMINgfs:-$(compath.py gfs/prod/gfs.$PDY)}

print starting time
prepend time to output
enable verbose logging

create temporary working
directory

set up temporal variables,
including PDY

alert output via DBNet
send signals to ecFlow

sub-directories of the
current model

provide access to nco
shared executables

variables used in com
directory organization

locations of incoming data

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 19 -

export getges_envir=${getges_envir:-prod}
export GESIN=${GESIN:-${GESROOT}/prod}
export COMIN=${COMIN:-$(compath.py ${NET}/${envir}/$RUN.$PDY)}

export COMOUT=${COMOUT:-${COMROOT}/${NET}/${envir}/$RUN.$PDY}
export COMOUTarch=${COMOUTarch:-${COMROOT}/arch/$envir/syndat}
export PCOM=${PCOM:-${PCOMROOT}/$NET}
export GESOUT=${GESOUT:-${GESROOT}/$envir}

mkdir –p $COMOUT $PCOM $GESOUT

export pgmout=OUTPUT.$$

env

$HOMEpmb/scripts/expmb_forecast.sh
export err=$?; err_chk

postmsg $jlogfile "$0 completed normally"

if [-e "$pgmout"]; then
 cat $pgmout
fi

if ["${KEEPDATA^^}" != YES]; then
 rm –rf $DATA
fi

date

locations of outgoing data

create output directories

output for executables

print current environment

execute ex-script
error checking

post successful completion
message

print exec output

remove temporary
working directory

print ending time

Example 9: ex-script expmb_forecast.sh
#!/bin/sh

Program Name: pmb_forecast
Author(s)/Contact(s): First Last
Abstract: Driver script for pmb forecast
History Log:
5/2014: Added error checking
8/2014: Modified for WCOSS

Usage:
Parameters: None
Input Files:
pmb.tHHz.anl
Output Files:
pmb.tHHz.fFFF.grib2

Condition codes:
99 - Missing input file

User controllable options: None

set -x

cpreq $COMIN/inputfile inputfile

export pgm=pmb_forecast

. prep_step
export FORT11=$FIXpmb/inputfile.tbl
export FORT12=inputfile
export FORT60=outputfile.grib2

ex-script DOCBLOCK

enable verbose logging

copy essential input files into
working directory

name of the binary executable

clear FORTRAN unit assignments
set FORTRAN unit assignments

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 20 -

startmsg
aprun –n 192 –N 24 $EXECmodel/$pgm >>$pgmout 2>errfile
export err=$?; err_chk

if [-s outputfile.grib2]; then
 cpfs outputfile.grib2 $COMOUT/outputfile.grib2
 if ["${SENDDBN^^}" = YES]; then
 $DBNROOT/bin/dbn_alert MODEL PMB_FCST \
 $job $COMOUT/outputfile.grib2
 fi
else
 err_exit "outputfile.grib2 was not generated"
fi

export pgm=tocgrib2
. prep_step
export FORT11=outputfile.grib2
export FORT51=grib2.t${cyc}.z.pmb.f000

startmsg
$TOCGRIB2 <$PARMpmb/grib2_awp_pmbf000 >>$pgmout 2>errfile
if [$? –ne 0]; then
 msg="WARNING: WMO header not added to $FORT51"
 postmsg $jlogfile "$msg"
 echo "$msg" | mail.py
fi

log program start
execute MPI program
error checking

check for required output
copy output file to output
directory

alert output file

terminate the job if the
expected output cannot be
found

Setup for tocgrib2 exec

define input file
define output file

add WMO header to file
error checking

Example 10: build readme file sorc/README
Build instructions:

1. cd to the sorc directory
2. load the build_pmb module:

 module purge
 module use .
 module load build_pmb.module

3. to build all executables:
 ./build_pmb.sh
to build one or more executables, provide their name(s) as parameter(s):
 ./build_pmb.sh pmb_forecast pmb_post

Example 11: build script sorc/build_pmb.sh
#!/bin/sh
set –x
sorc_root=$PWD

function build_dir {
 cd ${sorc_root}/$1
 make
 if [$? –eq 0]; then
 make install
 make clean
 else
 echo "ERROR: build of $1 FAILED!"
 fi
}

if [$# -eq 0]; then
 for source_dir in *.fd; do
 build_dir $source_dir
 done

enable verbose logging

move to the source directory of the given executable
make the executable
if the build exited cleanly
move the executable to the exec directory
clean the source directory

print error message

exit the source directory

if no parameters were given,
 build all executables
enter the build_dir function

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 21 -

else
 for source_dir in $*; do
 build_dir $source_dir.fd
 done
fi

if one or more executables were requested,
 build those that were requested
enter the build_dir function

Example 12: modulefile sorc/build_pmb.module (to be loaded prior to compilation)
#%Module##
First.Last@noaa.gov
ORGANIZATION
PMB-FCST v1.1.0

proc ModulesHelp { } {
 puts stderr "Set environment variables for PMB-FCST"
 puts stderr "This module initializes the user’s"
 puts stderr "environment to build the PMB model at NCEP"
}

module-whatis "PMB-FCST whatis description"

set ver v1.1.0
setenv COMP intel
setenv FC ftn

Known conflicts
conflict PrgEnv-intel/5.2.40
conflict NetCDF-intel-haswell/3.6.3
conflict w3nco-intel/2.0.5

Load Cray parallel environment for Haswell architecture
module load craype-haswell

Load Intel programming environment
module load PrgEnv-intel/5.2.56

Load NCEP libs modules
module load HDF5-serial-intel-haswell/1.8.9
module load NetCDF-intel-haswell/4.2
module load bacio-intel/2.0.1
module load w3nco-intel/2.0.6
module load jasper-gnu-haswell/1.900.1
module load png-intel-haswell/1.2.49
module load zlib-intel-haswell/1.2.7

module DOCBLOCK

module help

module description

set version and
compiler variables

establish known
conflicts

load ics and all ncep
library modules used
in the build process

Example 13: sorc/pmb_forecast.fd/makefile

Makefile for xxx
Use:
make - build the executable
make install - move the built executable into the exec dir
make clean - start with a clean slate

Tunable parameters:
FC Name of the FORTRAN compiling system to use
LDFLAGS Options of the loader
FFLAGS Options of the compiler
DEBUG Options of the compiler included for debugging
LIBS List of libraries
CMD Name of the executable

Makefile DOCBLOCK
containing
instructions and use

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 22 -

FC = ${FC} # Use Intel FORTRAN Compiler, ifort
LDFLAGS = -O -convert big_endian
BINDIR = ../../exec
INC = ${G2_INC4}
LIBS = ${G2_LIB4} ${W3NCO_LIB4} ${BACIO_LIB4} ${JASPER_LIB}
${PNG_LIB} ${Z_LIB}
CMD = pmb_forecast
DEBUG =
FFLAGS = -O3 -I $(INC) $(DEBUG)

Lines from here down should not need to be changed. They are
the actual rules which make uses to build CMD.

all: check_prereqs $(CMD)

$(CMD): $(OBJS)
 $(FC) $(LDFLAGS) -o $(@) $(OBJS) $(LIBS)

clean:
 -rm -f $(OBJS) *.mod $(CMD)

install:
 -mv $(CMD) ${BINDIR}/

check_prereqs:
 /gpfs/hps/nco/ops/nwprod/spa_util/check_libs.bash $(LIBS)
 /gpfs/hps/nco/ops/nwprod/spa_util/check_incs.bash $(INC)

name of compiler
options of the loader
executable location
include files
libraries

executable name
debug options
compiler options

check perquisite
libraries and includes

Appendix B: Variables and Directory Structure Tables
Table 6: Production utilities accessible via module variables

Variable exec Description
CNVGRIB cnvgrib Converts between GRIB1 and GRIB2
COPYGB copygb Copies all or part of GRIB1 file to another GRIB1 file
COPYGB2 copygb2 Copies all or part of GRIB2 file to another GRIB2 file
DEGRIB2 degrib2 Creates inventory of GRIB2 file
GRB2INDEX grb2index Creates index file from GRIB2 file
GRBINDEX grbindex Creates index file from GRIB1 file
GRIB2GRIB grib2grib Extracts GRIB records from a GRIB file made by gribawp1
TOCGRIB tocgrib Adds WMO header in front of each GRIB1 field
TOCGRIB2 tocgrib2 Adds WMO header in front of each GRIB2 field
TOCGRIB2SUPER tocgrib2super Adds WMO super header and time stamp to GRIB2 fields
WGRIB wgrib Creates inventory and decodes GRIB1 files
WGRIB2 wgrib2 Creates inventory and decodes GRIB2 files
NDATE ndate Date utility
MDATE mdate Date utility
NHOUR nhour Date utility
FSYNC fsync_file Synchronize file across GPFS

Table 7: Structure of /nwges directory
Subdirectory Description
prod/model.YYYYMMDD production spin-up data for model

NCO WCOSS Implementation Standards v10.1 Last updated March 17, 2016

 - 23 -

test/model.YYYYMMDD test spin-up data
para/model.YYYYMMDD parallel spin-up data

Table 8: Structure of /pcom directory
Subdirectory Description
prod/model production WMO headed output products
test/model test WMO headed output products
para/model parallel WMO headed output products

Table 9: Structure of /dcom directory
Subdirectory Description
us007003/YYYYMMDD incoming data for one day
us007003/YYYYMM Incoming data for one month (select types only)
us007003/YYYYMMDD/bTTT/xxSSS data tanks

TTT and SSS correspond to the 3-digit BUFR data category type and sub-type, respectively

	NCEP Central Operations
	WCOSS Implementation Standards
	I. Introduction
	II. Workflow
	III. Standard Variables, Formats, and Utilities
	A. Standard Environment Variables
	B. File Name Conventions
	C. Production Utilities
	prep_step
	startmsg
	postmsg
	err_chk
	err_exit
	cpreq
	cpfs
	compath.py
	mail.py
	getsystem.pl

	D. Date Utilities
	finddate.sh
	ndate
	setpdy.sh

	E. GRIB Utilities

	IV. Standards
	A. General Application Standards
	B. Compiled Code (C or Fortran source)
	C. Interpreted Code (bash, ksh or perl scripts)

	V. Dataflow
	VI. Code Delivery and Vertical Structure
	A. Source Code Compilation (C or Fortran)
	B. Directory Structures

	Appendix A: Workflow Examples
	Appendix B: Variables and Directory Structure Tables

